Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38410431

ABSTRACT

We investigated how long-term visual experience with habitual spherical aberration (SA) influences subjective depth of focus (DoF). Nine healthy cycloplegic eyes with habitual SAs of different signs and magnitudes were enrolled. An adaptive optics (AO) visual simulator was used to measure through-focus high-contrast visual acuity after correcting all monochromatic aberrations and imposing +0.5 µm and -0.5 µm SAs for a 6-mm pupil. The positive (n=6) and negative (n=3) SA groups ranged from 0.17 to 0.8 µm and from -1.2 to -0.12 µm for a 6-mm pupil, respectively. For the positive habitual SA group, the median DoF with positive AO-induced SA (2.18D) was larger than that with negative AO-induced SA (1.91D); for the negative habitual SA group, a smaller DoF was measured with positive AO-induced SA (1.81D) than that with negative AO-induced SA (2.09D). The difference in the DoF of individual participants between the induced positive and negative SA groups showed a quadratic relationship with the habitual SA. Subjective DoF tended to be larger when the induced SA in terms of the sign and magnitude was closer to the participant's habitual SA, suggesting the importance of considering the habitual SA when applying the extended DoF method using optical or surgical procedures.

2.
Biomed Opt Express ; 14(4): 1772-1776, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37078031

ABSTRACT

The guest editors introduce a feature issue commemorating the 25th anniversary of adaptive optics in biomedical research.

3.
Invest Ophthalmol Vis Sci ; 63(11): 6, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36223102

ABSTRACT

Purpose: To investigate whether visual experience with habitual blur alters the neural processing of suprathreshold contrast in emmetropic and highly aberrated eyes. Methods: A large stroke adaptive optics system was used to correct ocular aberrations. Contrast constancy was assessed psychophysically in emmetropic and keratoconic eyes using a contrast matching paradigm. Participants adjusted the contrasts of gratings at various spatial frequencies to match the contrast perception of a reference grating at 4 c/deg. Matching was done both with fully corrected and uncorrected ocular aberrations. Optical correction allowed keratoconus patients to perceive high spatial frequencies that they have not experienced for some time. Results: Emmetropic observers exhibited contrast constancy both with their native aberrations and when their aberrations were corrected. Keratoconus patients exhibited contrast constancy with their uncorrected, native optics but they did not exhibit constancy during adaptive optics correction. Instead. they exhibited striking underconstancy: they required more contrast at high spatial frequencies than the contrast of the 4-c/deg stimulus to make them seem to have the same contrast. Conclusions: The presence of contrast constancy in emmetropes and keratoconus patients viewing with their native optics suggests that they have learned to amplify neural signals to offset the effects of habitual optical aberrations. The fact that underconstancy was observed in keratoconus patients when their optics were corrected suggests that they were unable to learn the appropriate neural amplification because they did not have experience with fine spatial detail. These results show that even adults can learn neural amplification to counteract the effects of their own optical aberrations.


Subject(s)
Keratoconus , Adult , Emmetropia , Humans , Keratoconus/diagnosis , Optics and Photonics , Vision Disorders
4.
Biomed Opt Express ; 13(9): 4528-4538, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36187236

ABSTRACT

An adaptive optics (AO) system was used to investigate the effect of long-term neural adaptation to the habitual optical profile on neural contrast sensitivity in pseudophakic eyes after the correction of all aberrations, defocus, and astigmatism. Pseudophakic eyes were assessed at 4 and 8 months postoperatively for changes in visual performance. Visual benefit was observed in all eyes at all spatial frequencies after AO correction. The average visual benefit across spatial frequencies was higher in the pseudophakic group (3.31) at 4 months postoperatively compared to the normal group (2.41). The average contrast sensitivity after AO correction in the pseudophakic group improved by a factor of 1.73 between 4 and 8 months postoperatively. Contrast sensitivity in pseudophakic eyes was poorer, which could be attributed to long-term adaptation to the habitual optical profiles before the cataract surgery, in conjunction with age-related vision loss. Improved visual performance in pseudophakic eyes suggests that the aged neural system can be re-adapted for altered ocular optics.

5.
Proc Natl Acad Sci U S A ; 119(39): e2202485119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122241

ABSTRACT

Human cone outer segment (COS) length changes in response to stimuli bleaching up to 99% of L- and M-cone opsins were measured with high resolution, phase-resolved optical coherence tomography (OCT). Responses comprised a fast phase (∼5 ms), during which COSs shrink, and two slower phases (1.5 s), during which COSs elongate. The slower components saturated in amplitude (∼425 nm) and initial rate (∼3 nm ms-1) and are well described over the 200-fold bleaching range as the sum of two exponentially rising functions with time constants of 80 to 90 ms (component 1) and 1,000 to 1,250 ms (component 2). Measurements with adaptive optics reflection densitometry revealed component 2 to be linearly related to cone pigment bleaching, and the hypothesis is proposed that it arises from cone opsin and disk membrane swelling triggered by isomerization and rate-limited by chromophore hydrolysis and its reduction to membrane-localized all-trans retinol. The light sensitivity and kinetics of component 1 suggested that the underlying mechanism is an osmotic response to an amplified soluble by-product of phototransduction. The hypotheses that component 1 corresponds to G-protein subunits dissociating from the membrane, metabolites of cyclic guanosine monophosphate (cGMP) hydrolysis, or by-products of activated guanylate cyclase are rejected, while the hypothesis that it corresponds to phosphate produced by regulator of G-protein signaling 9 (RGS9)-catalyzed hydrolysis of guanosine triphosphate (GTP) in G protein-phosphodiesterase complexes was found to be consistent with the results. These results provide a basis for the assessment with optoretinography of phototransduction in individual cone photoreceptors in health and during disease progression and therapeutic interventions.


Subject(s)
Cone Opsins , GTP Phosphohydrolases , Phosphates , RGS Proteins , Retinal Cone Photoreceptor Cells , Catalysis , Cone Opsins/metabolism , GTP Phosphohydrolases/metabolism , Guanosine Monophosphate/metabolism , Guanosine Triphosphate/metabolism , Guanylate Cyclase/metabolism , Humans , Osmosis , Phosphates/metabolism , Phosphoric Diester Hydrolases/metabolism , Protein Subunits/metabolism , RGS Proteins/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Vitamin A/metabolism
6.
Biomed Opt Express ; 13(2): 728-743, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35284191

ABSTRACT

Precise control of the temperature rise is a prerequisite for proper photothermal therapy. In retinal laser therapy, the heat deposition is primarily governed by the melanin concentration, which can significantly vary across the retina and from patient to patient. In this work, we present a method for determining the optical and thermal properties of layered materials, directly applicable to the retina, using low-energy laser heating and phase-resolved optical coherence tomography (pOCT). The method is demonstrated on a polymer-based tissue phantom heated with a laser pulse focused onto an absorbing layer buried below the phantom's surface. Using a line-scan spectral-domain pOCT, optical path length changes induced by the thermal expansion were extracted from sequential B-scans. The material properties were then determined by matching the optical path length changes to a thermo-mechanical model developed for fast computation. This method determined the absorption coefficient with a precision of 2.5% and the temperature rise with a precision of about 0.2°C from a single laser exposure, while the peak did not exceed 8°C during 1 ms pulse, which is well within the tissue safety range and significantly more precise than other methods.

7.
J Vis ; 22(2): 15, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35195672

ABSTRACT

It is well known that crowding, the disruptive influence of flanking items on identification of targets, is the primary limiting factor to object identification in the periphery, while limits in the fovea are more determined by the ability to resolve individual items. Whether this is a dichotomous or merely a quantitative difference, and the transition between these two regimes, has remained unexplained. Here, using an adaptive optics system for optimal control of optical and stimulus factors, we measured threshold acuity for identification of Tumbling Es flanked by bars at a variety of flanker spacings and eight eccentricities in the parafovea. Thresholds at each eccentricity were influenced by resolution, contour interaction, and a saturating pedestal effect. When target-flanker spacing was plotted in terms of cortical distance, a single canonical clipped-line fit unified the resultant curves. The critical spacing for letters flanked by bars was found to be 1.3 to 1.5 cortical millimeters, corresponding to approximately 0.1*E outside the fovea.


Subject(s)
Form Perception , Humans , Crowding , Fovea Centralis , Vision, Ocular
8.
Biomed Opt Express ; 13(12): 6574-6594, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36589563

ABSTRACT

Light propagation in photoreceptor outer segments is affected by photopigment absorption and the phototransduction amplification cascade. Photopigment absorption has been studied using retinal densitometry, while recently, optoretinography (ORG) has provided an avenue to probe changes in outer segment optical path length due to phototransduction. With adaptive optics (AO), both densitometry and ORG have been used for cone spectral classification based on the differential bleaching signatures of the three cone types. Here, we characterize cone classification by ORG, implemented in an AO line-scan optical coherence tomography (OCT), and compare it against densitometry. The cone mosaics of five color normal subjects were classified using ORG showing high probability (∼0.99), low error (<0.22%), high test-retest reliability (∼97%), and short imaging durations (< 1 hour). Of these, the cone spectral assignments in two subjects were compared against AO-scanning laser opthalmoscope densitometry. High agreement (mean: 91%) was observed between the two modalities in these two subjects, with measurements conducted 6-7 years apart. Overall, ORG benefits from higher sensitivity and dynamic range to probe cone photopigments compared to densitometry, and thus provides greater fidelity for cone spectral classification.

9.
Biomed Opt Express ; 13(11): 5989-6002, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36733759

ABSTRACT

Optoretinography (ORG) has the potential to be an effective biomarker for light-evoked retinal activity owing to its sensitive, objective, and precise localization of retinal function and dysfunction. Many ORG implementations have used adaptive optics (AO) to localize activity on a cellular scale. However, the use of AO restricts field-of-view (FOV) to the isoplanatic angle, necessitating the montaging of multiple regions-of-interest to cover an extended field. In addition, subjects with lens opacities, increased eye movements and decreased mobility pose challenges for effective AO operation. Here, we developed a coarse-scale ORG (CoORG) system without AO, which accommodates FOVs up to 5.5 deg. in a single acquisition. The system is based on a line-scan spectral domain OCT with volume rates of up to 32 Hz (16,000 B-frames per second). For acquiring ORGs, 5.5 deg. wide OCT volumes were recorded after dark adaptation and two different stimulus bleaches. The stimulus-evoked optical phase change was calculated from the reflections encasing the cone outer segments and its variation was assessed vs. eccentricity in 12 healthy subjects. The general behavior of ΔOPL vs. time mimicked published reports. High trial-to-trial repeatability was observed across subjects and with eccentricity. Comparison of ORG between CoORG and AO-OCT based ORG at 1.5°, 2.5°, and 3.5° eccentricity showed an excellent agreement in the same 2 subjects. The amplitude of the ORG response decreased with increasing eccentricity. The variation of ORG characteristics between subjects and versus eccentricity was well explained by the photon density of the stimulus on the retina and the outer segment length. Overall, the high repeatability and rapid acquisition over an extended field enabled the normative characterization of the cone ORG response in healthy eyes, and provides a promising avenue for translating ORG for widespread clinical application.

10.
Biomed Opt Express ; 12(9): 5865-5880, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34692221

ABSTRACT

Line-scan OCT incorporated with adaptive optics (AO) offers high resolution, speed, and sensitivity for imaging retinal structure and function in vivo. Here, we introduce its implementation with reflective mirror-based afocal telescopes, optimized for imaging light-induced retinal activity (optoretinography) and weak retinal reflections at the cellular scale. A non-planar optical design was followed based on previous recommendations with key differences specific to a line-scan geometry. The three beam paths fundamental to an OCT system -illumination/sample, detection, and reference- were modeled in Zemax optical design software to yield theoretically diffraction-limited performance over a 2.2 deg. field-of-view and 1.5 D vergence range at the eye's pupil. The performance for imaging retinal structure was exemplified by cellular-scale visualization of retinal ganglion cells, macrophages, foveal cones, and rods in human observers. The performance for functional imaging was exemplified by resolving the light-evoked optical changes in foveal cone photoreceptors where the spatial resolution was sufficient for cone spectral classification at an eccentricity 0.3 deg. from the foveal center. This enabled the first in vivo demonstration of reduced S-cone (short-wavelength cone) density in the human foveola, thus far observed only in ex vivo histological preparations. Together, the feasibility for high resolution imaging of retinal structure and function demonstrated here holds significant potential for basic science and translational applications.

11.
Opt Express ; 28(25): 38390-38409, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33379652

ABSTRACT

Adaptive optics (AO) based ophthalmic imagers, such as scanning laser ophthalmoscopes (SLO) and optical coherence tomography (OCT), are used to evaluate the structure and function of the retina with high contrast and resolution. Fixational eye movements during a raster-scanned image acquisition lead to intra-frame and intra-volume distortion, resulting in an inaccurate reproduction of the underlying retinal structure. For three-dimensional (3D) AO-OCT, segmentation-based and 3D correlation based registration methods have been applied to correct eye motion and achieve a high signal-to-noise ratio registered volume. This involves first selecting a reference volume, either manually or automatically, and registering the image/volume stream against the reference using correlation methods. However, even within the chosen reference volume, involuntary eye motion persists and affects the accuracy with which the 3D retinal structure is finally rendered. In this article, we introduced reference volume distortion correction for AO-OCT using 3D correlation based registration and demonstrate a significant improvement in registration performance via a few metrics. Conceptually, the general paradigm follows that developed previously for intra-frame distortion correction for 2D raster-scanned images, as in an AOSLO, but extended here across all three spatial dimensions via 3D correlation analyses. We performed a frequency analysis of eye motion traces before and after intra-volume correction and revealed how periodic artifacts in eye motion estimates are effectively reduced upon correction. Further, we quantified how the intra-volume distortions and periodic artifacts in the eye motion traces, in general, decrease with increasing AO-OCT acquisition speed. Overall, 3D correlation based registration with intra-volume correction significantly improved the visualization of retinal structure and estimation of fixational eye movements.


Subject(s)
Imaging, Three-Dimensional/instrumentation , Optics and Photonics , Tomography, Optical Coherence/instrumentation , Artifacts , Equipment Design , Eye Movements/physiology , Fixation, Ocular/physiology , Humans
12.
Biomed Opt Express ; 11(9): 5274-5296, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-33014614

ABSTRACT

Optoretinography-the non-invasive, optical imaging of light-induced functional activity in the retina-stands to provide a critical biomarker for testing the safety and efficacy of new therapies as well as their rapid translation to the clinic. Optical phase change in response to light, as readily accessible in phase-resolved OCT, offers a path towards all-optical imaging of retinal function. However, typical human eye motion adversely affects phase stability. In addition, recording fast light-induced retinal events necessitates high-speed acquisition. Here, we introduce a high-speed line-scan spectral domain OCT with adaptive optics (AO), aimed at volumetric imaging and phase-resolved acquisition of retinal responses to light. By virtue of parallel acquisition of an entire retinal cross-section (B-scan) in a single high-speed camera frame, depth-resolved tomograms at speeds up to 16 kHz were achieved with high sensitivity and phase stability. To optimize spectral and spatial resolution, an anamorphic detection paradigm was introduced, enabling improved light collection efficiency and signal roll-off compared to traditional methods. The benefits in speed, resolution and sensitivity were exemplified in imaging nanometer-millisecond scale light-induced optical path length changes in cone photoreceptor outer segments. With 660 nm stimuli, individual cone responses readily segregated into three clusters, corresponding to long, middle, and short-wavelength cones. Recording such optoretinograms on spatial scales ranging from individual cones, to 100 µm-wide retinal patches offers a robust and sensitive biomarker for cone function in health and disease.

13.
Sci Adv ; 6(37)2020 09.
Article in English | MEDLINE | ID: mdl-32917686

ABSTRACT

Photoreceptors initiate vision by converting photons to electrical activity. The onset of the phototransduction cascade is marked by the isomerization of photopigments upon light capture. We revealed that the onset of phototransduction is accompanied by a rapid (<5 ms), nanometer-scale electromechanical deformation in individual human cone photoreceptors. Characterizing this biophysical phenomenon associated with phototransduction in vivo was enabled by high-speed phase-resolved optical coherence tomography in a line-field configuration that allowed sufficient spatiotemporal resolution to visualize the nanometer/millisecond-scale light-induced shape change in photoreceptors. The deformation was explained as the optical manifestation of electrical activity, caused due to rapid charge displacement following isomerization, resulting in changes of electrical potential and surface tension within the photoreceptor disc membranes. These all-optical recordings of light-induced activity in the human retina constitute an optoretinogram and hold remarkable potential to reveal the biophysical correlates of neural activity in health and disease.


Subject(s)
Light Signal Transduction , Retinal Cone Photoreceptor Cells , Humans , Light Signal Transduction/physiology , Retina/physiology , Retinal Cone Photoreceptor Cells/physiology , Tomography, Optical Coherence , Vision, Ocular
14.
J Opt Soc Am A Opt Image Sci Vis ; 37(4): A244-A254, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32400553

ABSTRACT

The spatial and spectral topography of the cone mosaic set the limits for detection and discrimination of chromatic sinewave gratings. Here, we sought to compare the spatial characteristics of mechanisms mediating hue perception against those mediating chromatic detection in individuals with known spectral topography and with optical aberrations removed with adaptive optics. Chromatic detection sensitivity in general exceeded previous measurements and decreased monotonically for increasingly skewed cone spectral compositions. The spatial grain of hue perception was significantly coarser than chromatic detection, consistent with separate neural mechanisms for color vision operating at different spatial scales.

15.
J Vis ; 19(5): 11, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31100127

ABSTRACT

To assess whether the eye's optical imperfections are relevant for hyperacute vision, we measured ocular wave aberrations, visual hyperacuity, and acuity thresholds in 31 eyes of young adults. Although there was a significant positive correlation between the subjects' performance in Vernier- and Landolt-optotype acuity tasks, we found clear differences in how far both acuity measures correlate with the eyes' optics. Landolt acuity thresholds were significantly better in eyes with low higher order aberrations and high visual Strehl ratios (r2 = 0.22, p = 0.009), and significantly positively correlated with axial length (r2 = 0.15, p = 0.03). A retinal image quality metric, calculated as two-dimensional correlation between perfect and actual retinal image, was also correlated with Landolt acuity thresholds (r2 = 0.27, p = 0.003). No such correlations were found with Vernier acuity performance (r2 < 0.03, p > 0.3). Based on these results, hyperacuity thresholds are, contrary to resolution acuity, not affected by higher order aberrations of the eye.


Subject(s)
Corneal Wavefront Aberration/physiopathology , Optics and Photonics , Retina/physiopathology , Visual Acuity , Adult , Female , Humans , Male , Young Adult
16.
Optica ; 6(8): 981-990, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-33614858

ABSTRACT

It is well known that the eye's optics and media introduce monochromatic and chromatic aberration unique to each individual. Once monochromatic aberrations are removed with adaptive optics (AO), longitudinal chromatic aberrations (LCA) define the fidelity for multi-wavelength, high-resolution vision testing and retinal imaging. AO vision simulation systems and AO scanning laser ophthalmoscopes (AOSLOs) typically use the average population LCA to compensate for focus offsets between different wavelengths precluding fine, individualized control. The eye's LCA has been characterized extensively using either subjective (visual perception) or objective (imaging) methods. Classically, these have faced inconsistencies due to extraneous factors related to depth of focus, monochromatic aberration, and wavelength-dependent light interactions with retinal tissue. Here, we introduce a filter-based Badal LCA compensator that offers the flexibility to tune LCA for each individual eye and demonstrate its feasibility for vision testing and imaging using multiple wavelengths simultaneously. Incorporating the LCA compensator in an AOSLO allowed the first objective measurements of LCA based on confocal, multi-wavelength foveal cone images and its comparison to measures obtained subjectively. The objective LCA thus obtained was consistent with subjective estimates in the same individuals and hence resolves the prior discrepancies between them. Overall, the described approach will benefit applications in retinal imaging and vision testing where the focus of multiple wavelengths needs to be controlled independently and simultaneously.

17.
Sci Rep ; 8(1): 8561, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29867090

ABSTRACT

Color vision requires the activity of cone photoreceptors to be compared in post-receptoral circuitry. Decades of psychophysical measurements have quantified the nature of these comparative interactions on a coarse scale. How such findings generalize to a cellular scale remains unclear. To answer that question, we quantified the influence of surrounding light on the appearance of spots targeted to individual cones. The eye's aberrations were corrected with adaptive optics and retinal position was precisely tracked in real-time to compensate for natural movement. Subjects reported the color appearance of each spot. A majority of L-and M-cones consistently gave rise to the sensation of white, while a smaller group repeatedly elicited hue sensations. When blue sensations were reported they were more likely mediated by M- than L-cones. Blue sensations were elicited from M-cones against a short-wavelength light that preferentially elevated the quantal catch in surrounding S-cones, while stimulation of the same cones against a white background elicited green sensations. In one of two subjects, proximity to S-cones increased the probability of blue reports when M-cones were probed. We propose that M-cone increments excited both green and blue opponent pathways, but the relative activity of neighboring cones favored one pathway over the other.


Subject(s)
Color Perception/physiology , Eye Movements/physiology , Retinal Cone Photoreceptor Cells/physiology , Adult , Humans , Male , Retinal Cone Photoreceptor Cells/cytology
18.
Sci Rep ; 8(1): 9177, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29907791

ABSTRACT

Crowding is the substantial interference of neighboring items on target identification. Crowding with letter stimuli has been studied primarily in the visual periphery, with conflicting results for foveal stimuli. While a cortical locus for peripheral crowding is well established (with a large spatial extent up to half of the target eccentricity), disentangling the contributing factors in the fovea is more challenging due to optical limitations. Here, we used adaptive optics (AO) to overcome ocular aberrations and employed high-resolution stimuli to precisely characterize foveal lateral interactions with high-contrast letters flanked by letters. Crowding was present, with a maximal edge-to-edge interference zone of 0.75-1.3 minutes at typical unflanked performance levels. In agreement with earlier foveal contour interaction studies, performance was non-monotonic, revealing a recovery effect with proximal flankers. Modeling revealed that the deleterious effects of flankers can be described by a single function across stimulus sizes when the degradation is expressed as a reduction in sensitivity (expressed in Z-score units). The recovery, however, did not follow this pattern, likely reflecting a separate mechanism. Additional analysis reconciles multiple results from the literature, including the observed scale invariance of center-to-center spacing, as well as the size independence of edge-to-edge spacing.


Subject(s)
Contrast Sensitivity/physiology , Fovea Centralis/physiology , Pattern Recognition, Visual/physiology , Adult , Female , Humans , Male
19.
J Neurosci ; 37(39): 9498-9509, 2017 09 27.
Article in English | MEDLINE | ID: mdl-28871030

ABSTRACT

A remarkable feature of human vision is that the retina and brain have evolved circuitry to extract useful spatial and spectral information from signals originating in a photoreceptor mosaic with trichromatic constituents that vary widely in their relative numbers and local spatial configurations. A critical early transformation applied to cone signals is horizontal-cell-mediated lateral inhibition, which imparts a spatially antagonistic surround to individual cone receptive fields, a signature inherited by downstream neurons and implicated in color signaling. In the peripheral retina, the functional connectivity of cone inputs to the circuitry that mediates lateral inhibition is not cone-type specific, but whether these wiring schemes are maintained closer to the fovea remains unsettled, in part because central retinal anatomy is not easily amenable to direct physiological assessment. Here, we demonstrate how the precise topography of the long (L)-, middle (M)-, and short (S)-wavelength-sensitive cones in the human parafovea (1.5° eccentricity) shapes perceptual sensitivity. We used adaptive optics microstimulation to measure psychophysical detection thresholds from individual cones with spectral types that had been classified independently by absorptance imaging. Measured against chromatic adapting backgrounds, the sensitivities of L and M cones were, on average, receptor-type specific, but individual cone thresholds varied systematically with the number of preferentially activated cones in the immediate neighborhood. The spatial and spectral patterns of these interactions suggest that interneurons mediating lateral inhibition in the central retina, likely horizontal cells, establish functional connections with L and M cones indiscriminately, implying that the cone-selective circuitry supporting red-green color vision emerges after the first retinal synapse.SIGNIFICANCE STATEMENT We present evidence for spatially antagonistic interactions between individual, spectrally typed cones in the central retina of human observers using adaptive optics. Using chromatic adapting fields to modulate the relative steady-state activity of long (L)- and middle (M)-wavelength-sensitive cones, we found that single-cone detection thresholds varied predictably with the spectral demographics of the surrounding cones. The spatial scale and spectral pattern of these photoreceptor interactions were consistent with lateral inhibition mediated by retinal horizontal cells that receive nonselective input from L and M cones. These results demonstrate a clear link between the neural architecture of the visual system inputs-cone photoreceptors-and visual perception and have implications for the neural locus of the cone-specific circuitry supporting color vision.


Subject(s)
Color Perception , Color Vision , Retinal Cone Photoreceptor Cells/physiology , Visual Pathways/physiology , Humans , Interneurons/physiology , Sensory Thresholds , Visual Pathways/cytology
20.
Vision Res ; 132: 78-84, 2017 03.
Article in English | MEDLINE | ID: mdl-27836334

ABSTRACT

Highly aberrated keratoconic (KC) eyes do not elicit the expected visual advantage from customized optical corrections. This is attributed to the neural insensitivity arising from chronic visual experience with poor retinal image quality, dominated by low spatial frequencies. The goal of this study was to investigate if targeted perceptual learning with adaptive optics (AO) can stimulate neural plasticity in these highly aberrated eyes. The worse eye of 2 KC subjects was trained in a contrast threshold test under AO correction. Prior to training, tumbling 'E' visual acuity and contrast sensitivity at 4, 8, 12, 16, 20, 24 and 28 c/deg were measured in both the trained and untrained eyes of each subject with their routine prescription and with AO correction for a 6mm pupil. The high spatial frequency requiring 50% contrast for detection with AO correction was picked as the training frequency. Subjects were required to train on a contrast detection test with AO correction for 1h for 5 consecutive days. During each training session, threshold contrast measurement at the training frequency with AO was conducted. Pre-training measures were repeated after the 5 training sessions in both eyes (i.e., post-training). After training, contrast sensitivity under AO correction improved on average across spatial frequency by a factor of 1.91 (range: 1.77-2.04) and 1.75 (1.22-2.34) for the two subjects. This improvement in contrast sensitivity transferred to visual acuity with the two subjects improving by 1.5 and 1.3 lines respectively with AO following training. One of the two subjects denoted an interocular transfer of training and an improvement in performance with their routine prescription post-training. This training-induced visual benefit demonstrates the potential of AO as a tool for neural rehabilitation in patients with abnormal corneas. Moreover, it reveals a sufficient degree of neural plasticity in normally developed adults who have a long history of abnormal visual experience due to optical imperfections.


Subject(s)
Corneal Wavefront Aberration/physiopathology , Keratoconus/physiopathology , Psychomotor Performance/physiology , Visual Perception/physiology , Adult , Contrast Sensitivity/physiology , Humans , Middle Aged , Neuronal Plasticity/physiology , Optics and Photonics , Psychophysics , Refraction, Ocular/physiology , Visual Acuity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...